Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368
D. Gayathri, ${ }^{\text {a }}$ D. Velmurugan, ${ }^{\mathrm{a} *}$ K. Ravikumar, ${ }^{\text {b }}$ E. Poonguzhali ${ }^{\text {c }}$ and H. Surya Prakash Rao ${ }^{\text {c }}$
${ }^{\text {a Department of Crystallography and Biophysics, }}$ University of Madras, Guindy Campus, Chennai 600025 , India, ${ }^{\text {b }}$ Laboratory of X-ray
Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India, and ${ }^{\text {c }}$ Department of Chemistry, Pondicherry University, Pondicherry 605 014, India

Correspondence e-mail: d_velu@yahoo.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.053$
$w R$ factor $=0.169$
Data-to-parameter ratio $=18.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
2,6-Diphenyl-1-propylpiperidine

The title molecule, $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}$, possesses crystallographic mirror symmetry. The piperidine ring adopts a chair conformation. The crystal packing is stabilized by weak $\mathrm{C}-\mathrm{H} \cdots \pi$ intermolecular interactions, which form a chain along the b axis.

Comment

Piperidine, one of the simplest heterocyclic systems, is found in nature as a part of several alkaloid compounds. It is a characteristic feature of antihistaminic agents, anesthetics, tranquilizers and hypotensive agents (Robinson, 1973). Both natural and synthetic piperidine derivatives have high pharmaceutical value. Several 2,6-disubstituted piperidine derivatives have fungicidal, herbicidal and bactericidal properties (Mobio et al., 1989).

(I)

The title molecule, (I), possesses crystallographically imposed mirror symmetry, with atoms C3, N1, C10, C11, C12 and $\mathrm{H} 12 A$ located on the mirror plane (Fig. 1). The bond lengths and angles are comparable with literature values (Allen et al., 1987). The sum of the bond angles around atom $\mathrm{N} 1\left(332.5^{\circ}\right)$ indicates $s p^{3}$ hybridization. The piperidine ring adopts a chair conformation. The puckering parameters (Cremer \& Pople, 1975) and the smallest displacement asymmetry parameters (Nardelli, 1983) are $q_{2}=0.018$ (1), $q_{3}=$ 0.558 (1), $Q_{\mathrm{T}}=0.559$ (1) \AA and $\varphi=2.1$ (1) ${ }^{\circ}$. The dihedral angle between the two symmetry-related phenyl rings is $55.52(4)^{\circ}$.

The crystal packing is stabilized by weak $\mathrm{C}-\mathrm{H} \cdots \pi$ intermolecular interactions. Atom C 2 at (x, y, z) acts as a donor to the $\mathrm{C} 4-\mathrm{C} 9$ phenyl ring (centroid $C g 1$) of a centrosymmetrically related molecule at $(1-x, 1-y,-z)$ through $\mathrm{H} 2 A$, generating a dimer with an $\mathrm{H} \cdots C g 1$ separation of $3.04 \AA$. The $\mathrm{C}-\mathrm{H} \cdots \pi$ dimers form a chain along the b axis (Fig. 2).

Experimental

To a homogenous solution of 1,3-diphenylpropane (1.19 mmol , $300 \mathrm{mg}, 1$ equivalent), propylamine ($11.9 \mathrm{mmol}, 700 \mathrm{mg}, 10$ equivalents) and polyethyleneglycol-200 (10 ml) in a 25 ml Erlenmeyer flask, 85% formic acid ($11.9 \mathrm{mmol}, 700 \mathrm{mg}, 1 \mathrm{ml}, 10$ equivalents) was added at $273-278 \mathrm{~K}$. The reaction mixture was then irradiated in a

Received 18 August 2006 Accepted 23 August 2006
\qquad

Figure 1
The structure of (I), showing 30% probability displacement ellipsoids. Atoms labelled with the suffix a are generated by the symmetry operation ($x, \frac{1}{2}-y, z$).

Figure 2
The crystal packing of (I), viewed down the a axis. $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions are shown as dashed lines.
domestic microwave oven for 3 min at 370 W by which time dibenzoylpropane was absent (thin-layer chromatography). After completion of the reaction, the reaction mixture was added to icecold water (25 ml) and the pH of the aqueous solution was adjusted to 11 with 1 N NaOH . The organic compounds were extracted with dichloromethane (DCM; $3 \times 15 \mathrm{ml}$). The DCM solution was dried over over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. The crude product was subjected to column chromatography on basic alumina by eluting with increasing amounts of ethyl acetate in hexanes (2% to 10%). After purification, compound (I) was obtained as a white crystalline solid (yield $70 \%, 223 \mathrm{mg}$). Single crystals of (I) were obtained by recrystallization from about $5 \% \mathrm{DCM}$ in hexane.

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}$
$M_{r}=279.41$
Monoclinic, $P 2_{1} / m$
$a=5.6325$ (4) A
$b=13.8274$ (11) \AA
$c=10.7341$ (8) \AA
$\beta=99.105(1)^{\circ}$
$V=825.47(11) \AA^{3}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.124 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation }^{\mu=0.06 \mathrm{~mm}^{-1}} \\
& T=293(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.25 \times 0.22 \times 0.21 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART APEX CCD areadetector diffractometer ω scans
Absorption correction: none
9508 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053$
$w R\left(F^{2}\right)=0.169$
$S=1.00$
2026 reflections
110 parameters
H atoms treated by a mixture of independent and constrained refinement

2026 independent reflections
1748 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.018$
$\theta_{\text {max }}=28.0^{\circ}$

$$
\begin{aligned}
& \begin{aligned}
& w=1 / {\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.1072 P)^{2}\right.} \\
&+0.1196 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.27 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-0.21 \mathrm{e}^{-3}
\end{aligned}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

$\mathrm{C} 1-\mathrm{N} 1$	$1.474(1)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.363(2)$
$\mathrm{C} 1-\mathrm{C} 4$	$1.511(2)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.379(2)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.525(2)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.380(2)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.513(2)$	$\mathrm{C} 10-\mathrm{N} 1$	$1.478(2)$
$\mathrm{C} 4-\mathrm{C} 9$	$1.384(2)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.486(3)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.381(2)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.502(3)$
$\mathrm{C} 5-\mathrm{C} 6$	$1.379(2)$		
$\mathrm{C} 1{ }^{\mathrm{i}}-\mathrm{N} 1-\mathrm{C} 1$	$112.1(1)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 10$	$110.2(1)$
$\mathrm{C} 1^{\mathrm{i}}-\mathrm{N} 1-\mathrm{C} 10$	$110.2(1)$		
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 4-\mathrm{C} 9$	$58.3(1)$		

Symmetry code: (i) $x,-y+\frac{1}{2}, z$.

Table 2
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 2 A \cdots C g 1^{\mathrm{ii}}$	0.97	3.04	$3.800(1)$	136

Symmetry code: (ii) $-x+1,-y+1,-z . C g 1$ is the centroid of the $\mathrm{C} 4-\mathrm{C} 9$ phenyl ring.

Atoms $\mathrm{H} 12 A$ and $\mathrm{H} 12 B$ were located in a difference map and refined freely. The remaining H atoms were positioned geometrically and allowed to ride on their parent C atoms, with $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

Financial support from the University Grants Commission (UGC-SAP) and Department of Science and Technology (DST-FIST), Government of India, is acknowledged by DG and DV for providing facilities to the department.

References

Allen, F. H., Kennard, O., Watson, D., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (2001). SMART (Version. 5.625/NT/2000) and SAINT (Version 6.28a). Bruker AXS Inc., Madison, Wisconsin, USA.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

organic papers

Mobio, I. G., Soldatenkov, A. T., Federov, V. O., Ageev, E. A., Sargeeva, N. D., Lin, S., Stashenko, E. E., Prostakov, N. S. \& Andreeva, E. I. (1989). Khim. Farm. Zh. 23, 421-427. (In Russian.)
Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.

Robinson, O. P. W. (1973). Postgrad. Med. J. (Suppl.), 49, 9-12.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

